
TIBCO Live Datamart
JavaScript Dashboard Sample
a Best Practices Guide (v1.0)

HOW-TO GUIDE | 2

Contents
Contents

3 | INTENT

3 | OVERVIEW

4 | Patterns

4 | Model, View, Controller Overview

4 | Promises Overview

5 | Charting Package Used

5 | CSS Package Used

5 | Terminology Used

6 | Classes and Objects

6 | Scope, Variables and Closure

6 | Shorthand

6 | Prototypes

7 | Function Constructors

8 | Project Description

9 | SAMPLE CODE WALKTHROUGH

9 | General

9 | Requirements

9 | LiveView JS APIs

10 | Source Code Files

10 | Roles and Responsibilities

11 | Source File for Model

12 | Source File for View

13 | PageListView (View 1 of 2)

14 | PageView (View 2 of 2)

14 | Visualizations

15 | View/TableView (Visualizations)

16 | View/ChartView (Another Visualization)

17 | Source for Controller

17 | Index.html

18 | Additional Source Files (not M, V or C)

18 | LiveViewQueryService

19 | TupleStore

19 | TAKEAWAYS: FORMULA FOR SUCCESS

20 | ADDITIONAL CONSIDERATIONS

20 | LiveView Server Load

20 | Data Rate and Rendering

HOW-TO GUIDE | 3

TIBCO® Live Datamart is the industry’s first live data mart for Fast Data. It provides
a push-based real-time analytics solution that enables business users to analyze,
anticipate, receive alerts on key events as they occur, and act on opportunities or
threats while they matter. The live datamart platform consists of TIBCO LiveView®
Server, TIBCO StreamBase LiveView® Desktop, and connectivity with more than
150 integration points.

INTENT
The intent of this guide is to provide materials (including a step by step “recipe”
that one could follow) to help users be successful in developing web apps with
the JavaScript API for TIBCO Live Datamart (the LiveView JS API). The most
basic building block is modular programming. More modular code is easier to
maintain. Through a level of abstraction and encapsulation, you will improve the
maintainability and extensibility of your application.

This document aims to explain one sample shipped with our product, the level
of encapsulation as well as the design patterns used in order that others could
use this sample as a starting point for his or her own LiveView JS application
development. In this way, this document is intended as a reusable guide for best
practices in building LiveView JS applications.

The goal of this document is to describe the shipped sample in depth and
use it to outline the steps to follow to produce an application that will meet the
customer’s needs. By using this sample as your starting point, or by following the
outlined steps, your application should be able to be maintained and extended
to handle potential future requirements. This sample uses a subset of the total
LiveView JS API and only those APIs used in the sample are addressed. There is
no intent to have this guide be an API reference or user guide for the API set.

There is some attempt to give an overview of different features of the
JavaScript language and patterns used; however, the intent is not to teach any
one of the language constructs or patterns. More information on any one of the
referenced topics is left to the reader (we provide suggested reading for some of
the related topics).

Please note: there is no expectation that this guide will address the
performance of your application. There will be some mention of considerations;
however, tuning a TIBCO StreamBase® or TIBCO Live Datamart application is not
within the scope of this document. Furthermore, it is not our intent to attempt
to describe here how to do a similar implementation with a framework such
as AngularJS or React. A sample showing the use of those techniques and/or
guidelines may be forthcoming. After following this guide, the reader should be
able to understand how to use the LiveView JS API in general, how to set up and
execute a query and then how to see the results of that query.

OVERVIEW
The idea for this particular shipped sample is to create a dashboard. It is important
to note that TIBCO Live Datamart is NOT just a dashboard. Rather, it is the industry’s
first live data mart for Fast Data. It provides a push-based real-time analytics solution
that enables business users to analyze, anticipate, receive alerts on key events as they
occur, and act on opportunities or threats while they matter. TIBCO Live Datamart
enables ad hoc queries against tens of millions of live streaming records a day and
includes connectivity with more than 150 integration points. TIBCO Live Datamart is
built to directly connect to massive streams of data in motion, including sensors, GPS,
and other Internet of Things (IoT) data sources. It supports the IoT protocols such as
OSI Pi and MQ Telemetry Transport (MQTT). Pre-built connectivity to data sources
includes messaging technologies based on JMS, historical data such as JDBC and
MySQL, static data such as CSV files, and others.

HOW-TO GUIDE | 4

At the heart of the LiveView server is the continuous query engine that processes
high-speed streaming data, creates fully materialized live data tables, manages
ad-hoc queries from StreamBase LiveView Desktop or custom user interfaces, and
continuously pushes live results as conditions change in real time. This document
aims to describe the best practices for how to build a custom user interface to the
LiveView server using the LiveView JS API.

PATTERNS
Please keep in mind as you read through this guide for how to best design your
custom user interface via this dashboard sample that TIBCO Live Datamart is
much more than just a dashboard. To start our custom user interface dashboard
building process, we will use the Model, View, Controller (MVC) pattern. If you are
unfamiliar with MVC pattern, we recommend this page for an overview:

 https://developer.chrome.com/apps/app_frameworks

For a comparison of the MVC/MVP/MVVM patterns, we recommend this
reading material:

http://addyosmani.com/resources/essentialjsdesignpatterns/
book/#detailmvcmvp

MODEL, VIEW, CONTROLLER OVERVIEW
There are many MVC frameworks, each with its own subtleties. In this sample we
will adhere to these general principles:

1 Keep the state in the model.

2 The view is responsible to render current state.

3 The controller reacts to changes in the view, if those changes in the view
require updates to the state, then the controller is responsible for that.

We are not using a framework (like Angular), although we will use Promises. A
Promise overview is upcoming in the next section.

•  M: Models – models are primarily concerned with business data.

•  V: Views – JavaScript views are about building and maintaining a DOM element.
A view typically observes a model and is notified when the model changes,
allowing the view to update itself accordingly.

•  C: Controller – an intermediary between models and views that are classically
responsible for updating the model when the user manipulates the view. When
users click on any elements within the view, it is not the view’s responsibility to
know what to do next. The view relies on a controller to make this decision for
it. Often times this is achieved by adding an event listener to the view that will
delegate handling the click behavior back to the controller, passing the model
information along with it in case that information is needed.

PROMISES OVERVIEW
The implementation of the LiveView JavaScript API uses promises, as does this
sample. Promises are an emerging standard. The promise interface represents a
proxy for a value not yet known at the time the promise is created. When making an
asynchronous call, a promise object is returned as a delegate or representative of
the asynchronously returned value. At any given point in time, the promise will either
be pending, fulfilled, or rejected depending upon the status of the asynchronous
function for which it was created. It will act like a proxy to the actual data that the
asynchronous function will eventually return. You can attach success and failure
callbacks to the promise, and you can chain promises together creating a sort of
synchronous flow or structure to your asynchronous program logic.

https://developer.chrome.com/apps/app_frameworks
http://addyosmani.com/resources/essentialjsdesignpatterns/book/#detailmvcmvp
http://addyosmani.com/resources/essentialjsdesignpatterns/book/#detailmvcmvp

HOW-TO GUIDE | 5

The main benefit afforded by use of promises is better structured, cleaner, easier
to read, and maintain code that involves asynchronous calls. Historically, order-
dependent asynchronous routines would require the use of nested callback
functions. Nested callback code quickly becomes a mess that is hard to
understand and harder to maintain.

The majority of the code in this sample is synchronous. As you will see in the
code walkthrough section, in the sample we render PageListViews and PageViews.
These actions are synchronous. Asynchronous calls occur in the interaction with
the LiveView server. One example of an asynchronous call that returns a promise
is the LiveView.connect function. When that function completes, the promise
that was passed will resolve and any subsequent chained promises will also be
resolved. The behavior is: We connect and expect a response. In this scenario,
the promise works well because there is an expectation that the asynchronous
function will conclude at some point in the future. Contrast that with the notion of
a continuous query where you open a connection and just keep listening. In that
continuous query scenario there is no notion of finishing. In that situation, rather
than a promise, callbacks are more appropriate.

CHARTING PACKAGE USED
This sample uses Highcharts for the JavaScript graphs and charting. Quite a few
charting libraries were evaluated when trying to decide on what to use internally.
None seemed as complete as Highcharts. One key consideration was to be able to
update specific points without redrawing an entire chart. Also, it should be noted
that TIBCO’s Highcharts license permits our clients to use Highcharts in their web
applications so long as they display data coming from a LiveView server. Here are
some of the others which were considered:

•  jqplot (http://www.jqplot.com/)

•  Rickshaw (http://code.shutterstock.com/rickshaw/)

•  dc.js (https://dc-js.github.io/dc.js/)

•  flotr2 (http://www.humblesoftware.com/flotr2/)

•  dimple (http://dimplejs.org/)

•  ECharts (https://ecomfe.github.io/echarts/doc/example-en.html)

Note that not all support the data point updating mentioned.

CSS PACKAGE USED
There are several CSS libraries that provide styles and layouts. For our sample, we
use Bootstrap.

 http://getbootstrap.com/examples/dashboard/

This package gives us easy to use, out of the box, stylish and attractive looking
web pages. Use of Bootstraps removes from the programmer the burden of
writing the bulk of CSS. You can think of this as “decorating” the pages without
doing much work. It is a very clean way to get an attractive UI. If you were to try
to implement the dashboard pages in this sample via plain HMTL, it would be
tedious and still look fairly bland or bare bones. Bootstrap is open source.

TERMINOLOGY USED
Throughout this guide we will rely on certain terminology. This section is
somewhat like a glossary but is presented here to be sure the reader understands
this terminology and these concepts. The sample is more easily understood if
these concepts are known.

http://www.jqplot.com/
http://code.shutterstock.com/rickshaw/
https://dc-js.github.io/dc.js/
http://www.humblesoftware.com/flotr2/
http://dimplejs.org/
https://ecomfe.github.io/echarts/doc/example-en.html
http://getbootstrap.com/examples/dashboard/

HOW-TO GUIDE | 6

Classes and Objects
JavaScript is a language without the concept of a class. Everything is an object.
As we walk through this sample and speak to encapsulation, it may be helpful to
think of a more traditional class based language. Each source file in our sample
encapsulates the concept of a class. For instance, PageListView.js contains the
code for what can be considered the PageListView class. Furthermore, we will
have an instance of a PageListView object.

Scope, Variables, and Closure
Within the code and possibly in some of the text describing the code there will be
references to “global” scope objects. When there is a line of code like:

var PageListView = (function($){

we will refer to this as a global PageListView object. The “(function($)” syntax is
an immediately invoked function expression (IIFE). This defines a function and
invokes it immediately. This is done to make use of closure. Variables are scoped
to the function in which they are declared. If you follow this syntax, then the
variables are only scoped to this function vs. being added to the window or some
more general context. These variables are not needed anywhere else, so keep
them local and cause their scope to be closed.

In the line of code above, the PageListView object will be assigned the result of
the immediately invoked function.

Shorthand
The sample code also uses the “$” shorthand. In this immediately invoked function,
a jQuery object is passed via these lines of code:

var PageListView = (function($){ . . .
})(jQuery);

Each reference to “$” within this function therefore refers to jQuery. This is
another technique. It is a safe way of scoping to know that “$” doesn’t refer to
something else.

Prototypes
The sample code uses prototypes. JavaScript does not have classical inheritance
based on classes (as most object oriented languages do), and therefore all
inheritance in JavaScript is made possible through the prototype property.
You can use JS without using explicit prototypes. For instance, if you call a
string function, like substring, it is defined in the string’s prototype. This is not
necessarily seen or explicitly called out; but that is how it is implemented and
how it works.

Think of an object in JS as being a set of fields with values. Prototypes give the
notion of typing, and to be able to define functions to use on the objects. Any
time there is an instance of this JS object, programmers can have access to a well
defined set of functions that can execute. Prototypes give you this ability. They
are understood in the language, whether you choose to explicitly use them or not.

It is important (and possibly somewhat confusing) to note that functions
themselves are objects.

HOW-TO GUIDE | 7

Object Prototypes:
Every object in JavaScript has a prototype. An object’s prototype is a reference to
an object that defines properties and functions inherited by the object. Prototype
objects are hierarchically chained such that when JavaScript attempts to find a
property or function on an object it first examines the object itself. If the property
cannot be found, it proceeds to look for the property on the object’s prototype,
continuing up the prototype chain until it reaches Object.prototype. If Object.
prototype is reached and the property is still not found, it gives up. This works
somewhat like single parent inheritance in a language that is class based. The
difference: In class-based language, there aren’t object instances that are being
traversed whereas in JS, prototype objects are instantiated, existing-in-memory
objects that store properties and functions. This attempt to find the property by
walking the inheritance path is called a prototype chain.

Function Prototypes:
A function’s prototype is the object instance that will become the prototype for
all objects created using this function as a constructor. You add methods and
properties on the prototype when you want instances of an object to inherit
those methods and properties. You can think of the prototype as having the
shared or class variables. Those shared things are stored in the prototype and
then the object instance itself doesn’t have a copy. The function prototype is
the one place in memory where functions exist for all instances. In this way, use
of prototypes can save memory (vs. each instance having its own copy of each
function). Possibly important to note depending on your background: Prototype
functions (unlike static functions in C++) can actually manipulate properties on
object instances.

There is subtle detail relative to prototypes and constructor properties. For
those without a JavaScript background, it may be too detailed for this paper. It
is presented here because of the programming style used in the sample. In the
sample, each prototype starts with code as follows: (from PageListView.js)

PageListView.prototype = {
 constructor: PageListView, . . .

A function’s prototype defines the constructor property (which points to the
constructor of the function). When a programmer explicitly declares a function
prototype, it overwrites what had been in place. One side effect or disadvantage
of that overwrite is that the constructor property no longer points to the
prototype. It is desirable to have the constructor property point to the prototype;
therefore we have to set it manually. Thus the first line in the prototype function in
our sample is the reset to point the constructor property back at the constructor
function. This is not the only way of defining prototype functions and properties.
The technique used in this sample requires the reset. (A relatively quick, good
read with a pictorial explanation on this topic can be found here: http://javascript.
info/tutorial/constructor.)

Function Constructors
Another topic/feature use: function constructors. Function constructors go hand
in hand with prototypes. For the sake of this portion of the overview/description
of the sample, we will show some code but not go into full description of the
code. In our sample will have code like this:

var PageListView = (function($){
 ‘use strict’;
		function	PageListView(element,	model,	config){	.	.	.

HOW-TO GUIDE | 8

This part of the above code sets a global variable named PageListView to point to
the Immediately Invoked Function Expression’s (IIFE) returned value.

 var PageListView = (function($){
It is the function declaration inside of this IIFE that is the constructor. Thus our
function constructor is:

function	PageListView(element,	model,	config){	.	.	.
For this object, the function prototype is this:

PageListView.prototype = {
 constructor: PageListView, . . .

We can have variable declarations for these objects like:

var pageListView;

Finally, to complete this portion of description of the language features and our
sample code, variable assignment via a call to the function constructor looks like this:

pageListView = new PageListView($(‘#pageList’), appModel.pages, {});

The variable assignment line of code assigns to the PageListView variable the
return of the call to the function constructor.

PROJECT DESCRIPTION
The high level overview of this sample is that we are building a dashboard. The
dashboard will have multiple visualization components, each one driven by a query
to TIBCO Live Datamart that uses the LiveView JS API. It is possible to issue a
snapshot only query; however, we do not issue any of those here. All queries issued
in this sample are continuous. To get started, we begin by thinking about the MVC
pattern; specifically we start by thinking about the “M,” the Model. This will be the
data representation of the dashboard. There are several CSS libraries that do styles
and layouts. For our sample, as mentioned above, we use bootstrap.

Our dashboard will have static content at the top (a header, “StreamBase
LiveView JavaScript Sample”) and at the bottom (a footer, “Copyright 2015
TIBCO Software Inc”).

On the left, we will have a list of pages that will show up on the dashboard
(PageList). For this sample, there are two pages “Inventory” and “Sales.”

On the right are the pages or views (PageView). Each page view has a title and
then some sections. Within each section, there can a title (or note) and there can
be multiple components.

Thus, our dashboard will look something like this:

HOW-TO GUIDE | 9

SAMPLE CODE WALKTHROUGH
GENERAL
Before we get into the low level details of the source code, we will discuss a few
general recommendations.

First recommendation is use of “use strict.” This directive tells the browser, “if
you encounter this thing and it’s not quite right, generate an error rather than try
to interpret it.” This directive makes code better and less error prone. Rather than
the browser trying to best guess and getting weird behavior later that you may
not be able to track down, you will get an error if you “use strict.” This is used
throughout the sample and it is recommended that you too use it.

Second recommendation is to check the object about to be acted upon for
correctness. In each source file you will see code like this:

//make sure this is what we expect it to be
if(this instanceof PageListView === false){
		 return	new	PageListView(element,	config);
}

This is the safety check. For the sake of clarity, look at these two declarations of a
variable of type PageListView:

var a = PageListView();
var b = new PageListView();

In the first declaration, the “this” in the PageListView controller would refer to
Window (not a PageListView instance). In the second declaration, with a call to
new, we are assured of getting a PageListView instance. Thus, this check ensures
we are in fact using a PageListView instance. Without such a check, it could lead
to an attempt to set properties on an object that was not intended. This, in turn
leads to problems that are hard to track down. To prevent such problems, we do
the test in each constructor.

REQUIREMENTS
The following are required to be able to use the LV JS API:

<!-- Required LiveView libraries -->
<script src=”/lv-web/api/lib/jquery.min.js”></script>
<script src=”/lv-web/api/lib/jquery.atmosphere.min.js”></script>
<script src=”/lv-web/api/liveview.min.js”></script>

This line is required for our use of the bootstrap layout/style package:

<!-- Supplemental libraries for visualizations and dashboard UI -->
<script src=”lib/bootstrap.min.js”></script>

These lines are required for use of highcharts for our visualizations:

<script src=”lib/highcharts.min.js”></script>
<script src=”lib/highcharts-more.js”></script>

LIVEVIEW JS APIS
The following LV JS APIs are used in this sample:

•  LiveView.connect: Connects to the LiveView server identified by the settings.
url parameter

•  LiveView.Connection - Object returned upon successful connection
to LiveView

•  LiveView.closeAllConnections: Closes all currently active LiveView
server connections

•  LiveView.Query: Object that defines a LiveView query (LiveView.Connection.
subscribe requires this)

HOW-TO GUIDE | 10

Once connected, and a query object created after connection, these APIs are called:

•  LiveView.Connection.subscribe: Performs a continuous LiveView query that
will be updated with any changes in query results.

•  LiveView.Connection.unsubscribeAll: Unsubscribes from (cancels) all
active query subscriptions that were made via the connection. This
is useful when switching dashboard pages rather than closing each
querySubscription individually.

At the highest, most basic level, this sample connects to a LiveView server, creates
and subscribes to some number of queries (associating with each callbacks
depending on the query return), and then executes the queries. There are two
different “pages” on the dashboard — when the user switches from one page
to the other, the queries that had been running on the previous active page are
cancelled or stopped (via unsubscribeAll), then the queries on the newly active
page are started (via subscribe).

For each query, there are callbacks associated that direct actions based
on what type of event the LiveView server is returning for the query
(onSnapshotStart, onInsert, onUpdate, onDelete, onError).

SOURCE CODE FILES

•  index.html

•  app.model.js

•  LiveViewQueryService.js

•  TupleStore.js

•  View/PageListView.js

•  View/PageView.js

•  View/TableView.js, GaugeView.js, PieChartView.js, ChartView.js (one for each
visualization type)

ROLES AND RESPONSIBILITIES
Given our MVC model, the list of LiveView JS APIs, and the source code file list,
let’s look at how each is related. What role does each source file fill? We will walk
through each source file in detail in later sections.

The model is held within appModel.js. Here you can add components to or
remove components from your dashboard without the need to change any other
code. The model is defined as some (variable) number of pages, each page
has some (variable) number of sections, and each section has some number of
components. It is here that the visualization type for the component is defined (a
pie chart vs. a table) and the query string for the component is set (for instance:
‘SELECT * FROM ItemsInventory’).

The View: there are many different views in the application. The PageView and
PageListView are the views for the Page and PageList. Similarly, the GaugeView
is the view for gauges, the ChartView is the view for charts, etc. In this particular
application, the views don’t support any user interactions so there is no need for
corresponding controllers (PageController, PageListController, ChartController,
etc), although you could argue that the page-changing logic in index.html would
be better-placed in a PageListController. Each view is responsible for rendering
content on the page. Thus, the PageListView renders the list of pages using an HTML
unordered list, the PageView renders the different sections and their components,
the ChartView renders a Highcharts chart, etc. The content rendered by the view
is primarily determined by the data contained in its model. In the case of the
PageView and PageListView, the model is static and provided by the appModel

HOW-TO GUIDE | 11

object in app.model.js. The visualization views (ChartView, GaugeView, etc) all use
their own instance of LiveQueryModel defined in LiveViewQueryService as their
model. These view implementations contain the callback functions that are triggered
when the query returns new/updated data (where the implementation’s model
[LiveQueryModel instance] does the triggering).

The Controller: This demo has very little user interaction that it has to handle.
Really the only interaction supported is changing the page when a link in the
PageList is clicked. Because of this, one could argue that we should have a
PageListController and put all the page-changing logic there. It could also be
argued that because we don’t have any real controllers that this demo fits more
with an MV* pattern than a strict MVC pattern. Earlier in this paper we defined
a controller’s role as “reacts to changes in the view, if those changes in the view
require updates to the state, then the controller is responsible for that.” Thus,
without much user interaction, we don’t have much of a controller. Within index.
html there is code that handles the switch from the Sales page to the Inventory
Page and vice-versa.

Closely related, though not technically a controller, we have what one could
think of as a singleton class that defines the LiveQueryModel object and provides
functions to manage the LiveView connection. This functionality is implemented
in LiveQueryService.js. The LiveQueryService is a way to encapsulate all access to
the LiveView server. It establishes and shares the connection to the server, creates
and executes the queries. Without the service, a similar implementation would
have a good amount of code repetition. For instance, each visualization type
(chart view, gauge view, etc) would have similar/same repeated code to establish
a connection, create a query, execute it, set up the callbacks. Coordination would
be required to try to share a single connection. In this sample, when the user
changes which page they wish to see, the queries on that page are terminated.
Without the service implementation, a change of pages would require each
visualization to terminate its own set of queries.

The remaining source file, TupleStore.js is used as part of the implementation;
it manages a query’s resultant dataset. Some visualization types require the full
data set vs. just the changed data members. A continuous query returns only
the changed data members as a matter of efficiency. For any given visualization
that requires the full data set, we have to maintain a copy of the data locally. The
TupleStore fulfills this need for a local copy of the data.

SOURCE FILE FOR MODEL
The model code is contained in appmodel.js. We have an appModel which is
composed of multiple pages. In this sample there are two pages:

1 inventory

2 sales

Each page has some attributes (for instance, a name and title) and multiple
sections. Each section has some number of components. One singular component
is a visualization from Highcharts (a pie chart or a bar chart) and each chart is
populated/updated with a query from the LiveView server. The TableView is an
exception. It is not a Highcharts visualization; it just renders HTML. That said, its
model and query mechanics are the same.

This code starts that definition our model.

var appModel = {
 pages: {

HOW-TO GUIDE | 12

Each page has name, title and multiple different sections. This code starts the definition
of the pages with multiple sections:

 inventory: {
 name: ‘Inventory’,
 title: ‘Current Warehouse Inventory’,
 sections:[

Each section has some number of components in them. This code starts the definition
of the multiple components as well as defining the first component’s visualization type:

 components: [
 {
 query: ‘SELECT * FROM ItemsInventory’,
 visualizationType: ‘pie’,
		 	 	 			visualizationConfig:	.	.	.	

The data that drives each component is a query:

 query: ‘SELECT * FROMItemsInventory’,

Note the bootstrap implementation uses a grid. Within the definition of a
component there is a colSpan directive. This is like a width. It will be used in conjunction
with the grid layout of bootstrap. Thus, the last two items in a component definition are

“width” (colSpan) and height:

 colSpan: 4,
 height: 400

This grid, for simplicity’s sake, breaks a page into 12 columns and depending on
how you resize your window, it will scale your components on that page accordingly.

SOURCE FILE FOR VIEW
In order to render the model, we have different views. This dashboard has two primary
views: The PageListView and PageView. The PageListView is the left side bar “Inventory”
and “Sales”. If a user selects one of those two, then the Page on the right changes to
show the relevant information.

Recall from the overview (specifically the description of Promises) that rending of the
views is synchronous. The PageList and Page views render synchronously so there’s no
need for asynchronous handling (neither callbacks nor promises).

HOW-TO GUIDE | 13

PageListView (View 1 of 2)
Looking at PageListView.js, we see the constructor and prototype functions. The
call to the PageListView constructor exists in the source file index.html:

pageListView = new PageListView($(‘#pageList’), appModel.pages, {});

This call to the constructor passes in the DOM element in which to render our
PageListView, along with the model and some configuration parameters (these
are NOT currently used and may be removed!)

First thing the constructor does is the safety check to ensure it has a
PageListView instance (was this code called via a “new”), per the recommended
practice outlined above.

//make sure this is what we expect it to be
if(this instanceof PageListView === false){
		 return	new	PageListView(element,	config);
}

Then the constructor sets the members for the instance from the parameters.

_this = this;
 this.element = element;
 this.model = model;
	this.config	=	config	||	{};

It sets up the DOM element:

 this.listElement = $(‘<ul class=”nav nav-sidebar”>’);

It then populates the DOM element according to what pages are in the model
(basically, this block of code looks to the model to decide what to display in
the DOM):

for(pageId in model){
 if(model.hasOwnProperty(pageId) === false){ continue;}
		 ? = this.listItemElements.push(
 $(‘<li style=”cursor:pointer;”>’
 + model[pageId].name + ‘’)
 .click(
 function(event){
 _this.listElement.children(‘li’).removeClass(‘active’);
 $(event.target.parentElement).addClass(‘active’);
 }
)
);
 this.listElement.append(this.listItemElements[l-1]);
 $(element).append(this.listElement);
}

This line of code:

 $(element).append(this.listElement);

adds the DOM element to the DOM so it actually gets rendered.

HOW-TO GUIDE | 14

For PageListView there is only one function:

selectPage: function(pageId){

Users of this dashboard can navigate to one of the two pages by clicking in the left
sidebar on “Inventory” or “Sales,” or they can enter a specific URL. Example URL:

<UserMachine>:10080/dashboard2/#inventory
<UserMachine>:10080/dashboard2/#sales

When the navigation happens, the correct page must be displayed. The change
of which page to display is accomplished through the “selectPage” function
of PageListView.

PageView (View 2 of 2)
PageView (PageView.js) has the constructor and prototype functions. Within the
prototype there is a call to just one immediately invoked function called setModel:

setModel: function(model){

When setModel is called the page actually renders itself.
The block of code that begins with this line:

Array.prototype.forEach.call(

clears out all the existing children (when you switch from page “a” to page “b,” you
have to remove all the old info before you can display new page selection info).

Next there is a block of code that loops through each section in the model:

model.sections.forEach(function(sectionModel, sectionId){

In this loop, there is a call to create the page section div element:

sectionElements[sectionId] = $(‘<div class=”page-section”></div>’);

The info will be rendered in this div element. Then we add to that element the title
(if one exists) via this code:

sectionElements[sectionId].append(‘<h2 class=”sub-header”>’ +

sectionModel.title + ‘</h2>’);

Finally, we loop through and add each component in the section with the block of
code that starts as follows:

sectionModel.components.forEach(function(component){

It is here that the visualization type is examined and then the constructor for
that particular visualization is called in order to render a specific chart on the
dashboard. In the first section of the inventory page, there is a pie chart, column
chart, and a table (as defined in the model) and this code loops through to create
each of those.

VISUALIZATIONS
For this sample, there are four types of visualizations implemented: table, pie,
guage and chart. The table is pure html, the other three are implemented from
Highcharts. You can build your own and/or use others from the Highcharts
package. For each of the Highcharts visualizations, the options field from the
visualizationConfig field of the component model object is used to pass necessary
configuration options to Highcharts (this data structure:
appModel.pageX.sections[sectionIndex].components[componentIndex].
visualizationConfig.options)

HOW-TO GUIDE | 15

The model being used by the sample has a field value named “visualizationType.”
The visualization is populated using the data coming from the subscription to the
query defined in the field “query.” This type corresponds 1 to 1 with the .js source
files in the views folder. Thus, within app.model.js there are visualizationType
variables set to “table,” “pie,” “guage,” and “chart,” and within the views folder
there are source files TableView.js, PieChartView.js, GaugeView.js and ChartView.js.

For the HighChart visualizations, the configuration of the visualization follows
the standard Highchart configuration options. In particular, most if not all of
the visualizations take a title, plotType, options, category, and series. It is worth
noting that the pie and gauge take a specific set of config options that are
distinct and separate from all other HighChart chart types:

•  Pie:

•  title – string

•  legend – object that follows Highchart’s legend object schema

•  categoryField – string name of the field in the query schema to use as the
category value

•  valueField – string name of the field in the query schema to use as the
actual value

•  Gauge:

•  title – string title

•  min – number minimum range value for the gauge

•  max – number maximum range value for the gauge

•  units – string identifying what the metric units are (“meters,” “mph,”
“dollars,” etc.)

•  valueField – string name of the field in the query schema to use as value

In app.model.js a query and associated visualization are determined. Any/
all configuration options for visualization are determined and placed into the
visualizationConfig field. These configuration options are then passed through
to HighCharts. NOTICE: with the exception of pie and gauge, many other charts
from HighCharts are represented as a visualizationType of “chart.” Then, within
the visualizationConfig, the plotType field determines the type of HighChart that
is displayed. In this sample, there are line charts and column charts (often called a
bar chart).

We’ll take a look at each of these pieces of the visualization in depth as we
walk through the code in the next sections.

View/TableView (Visualizations)
Each of the four visualization source files operates the same at a conceptual level.
They take the element in which they will render themselves. Based on the model
that they have, they determine what they need to display. For a table, that means
adding new rows as new data comes in, or updating cells, or removing rows upon
delete. When a chart is used, it may need to add new points. Or for a pie chart,
new slices may need to be added. Those view specific responsibilities are all
handled by the view code in the specific view source file.

As stated above, the view gets its query data from the LiveQueryModel
(described in detail in the next section). The LiveQueryModel executes all the
callback functions registered as listeners. What this view type does with the data
varies depending on the type of view.

HOW-TO GUIDE | 16

Within TableView.js there is a block of code that sets up a listener for each type
of action:

//Subscribe to model updates so we can update the view
if(model instanceof LiveViewQueryService.LiveQueryModel){
 model.addSchemaListener(this.handleSchemaSet, this);
 model.addInsertListener(this.handleDataAdded, this);
 model.addUpdateListener(this.handleDataUpdated, this);
 model.addDeleteListener(this.handleDataRemoved, this);
}

Not all visualization types listen for each of these types of events. For instance, a
guageView object only cares about inserts and updates; therefore in its source file
it does not call addSchemaListener nor addDeleteListener.

TableView.js example

handleSchemaSet: function(schema){
 //set the header rows of the table
 //add a data row to the table
			var	cells	=	[],	titleMap	=	this.config.fieldNameToTitleMap	||	{};
 this.schema = schema;
			schema.fields.forEach(function(schemaField){
		 	cells.push(‘<th>’	+	(titleMap[schemaField.name]	||	

schemaField.name) + ‘</th>’);
 });
 this.tableHead.append(‘<tr>’ + cells.join(‘’) + ‘</tr>’);
 },

View/ChartView (Another Visualization)
As mentioned earlier, the tableView is pure html. The pie, gauge and chart types
are wrappers around a Highcharts visualization type. Here we will examine the
generic ChartView.js. The required listeners are add, delete, and update of data.
The key function is buildChart:
function	buildChart(element,	config){

	 		config	=	config	||	{};
	 		config.options	=	config.options	||	{};
 return new Highcharts.Chart({
 chart: $.extend(true,
	 	 	 		config.options.chart	||	{},
 {
	 	 	 	 	type:	config.plotType	||	‘line’,
 renderTo: element,
 animation: Highcharts.svg
 }
),
	 	 	 title:	{text:	config.title},
	 	 	 xAxis:	config.options.xAxis	||	{},
	 	 	 yAxis:	config.options.yAxis	||	{},
	 	 	 tooltip:	config.options.tooltip	||	{},
	 	 	 legend:	config.options.legend	||	{},
	 	 	 plotOptions:	config.options.plotOptions	||	{},
	 	 	 series:	config.series.map(function(configSeriesItem){
	 	 	 	 return	$.extend({data:	[]},	configSeriesItem);
 })
 });

HOW-TO GUIDE | 17

One thing to notice: the default chart plotType is line. If you do not specify a plot
type, your dashboard will display a line chart. For all possible chart types, see

api.highcharts.com/highcharts#plotOptions

Highcharts requires a specific model/ data construct for how it displays things.
Therefore, within each view source file, there are two different variables used
that pertain to models. One is the “model” used locally for LiveQueryModel
representation. The other is the “viewmodel” that is used to pass to Highcharts in
the format it requires. Notice in the code above that a Highcharts chart is created
via a call to new and then each of the options is configured. If you wanted to
configure any additional options on a particular Highchart, you would have to
modify this buildChart function to include the additional options. For instance, not
passed is drilldown. Furthermore somewhere else in your code (most likely in app.
model.js) you would have to set the options to be passed. Most charts take the
options listed in ChartView.js. Pie and gauge are slightly different, and because of
that, they have their own source file.

SOURCE FOR CONTROLLER
Before we delve into the details of the controller source file, a reminder that the
current version of JS API uses WebSockets. All events from the LiveView server
are communicated through the WebSocket. To try to keep things clean, the server
will terminate all queries for a connection when it determines that the WebSocket
closes. The previous implementation of the JS API did not use WebSockets. The
result of the previous implementation was that a user could run any number of
queries and then close the browser thinking it would kill those N queries. However,
the queries would continue to run. In order to stop the queries, the JS API
programmer had to manually call to cancel each query. In addition, the LiveView
server imposes query limit. The net result of the need to manually cancel (which
did not happen when users closed their browsers) and the server limit is that
users hit the 100 query limit. We mention that here as a point of emphasis both
for how the current JS API is implemented and because in this sample, any
unused (not currently being viewed) queries are manually cancelled.

As mentioned earlier, the majority of the code in this sample is synchronous.
Rendering PageListViews and PageViews are all synchronous. Asynchronous calls
occur in the interaction with the LiveView server. With continuous queries, there
is no notion of finishing; a connection is opened, per se, and then the connection
just keeps listening. In that situation, we use callbacks.

Index.html
Within this file lies the logic that performs the task of an application or dashboard
controller, manipulating the page and pagelist according to the URL hash. From
index.html the following code controls what happens when a user clicks on a URL
in the PageListView (to change from one page to another)

 //listen for URL hash changes and update page and page
list views accordingly

 $(window).on(‘hashchange’, function(){
 pageId = location.hash.slice(1);

 LiveViewQueryService.cancelRunningQueries(); //
clean up queries started by the previous page

 pageListView.selectPage(pageId);
 pageView.setModel(appModel.pages[pageId]);
 });

HOW-TO GUIDE | 18

Because the browser or the tab is not being closed, the WebSocket stays open.
Therefore for each query fired on the dashboard, the query will continue running
until / unless it is cancelled. In the code above the call is made to explicitly cancel
the running query(s) when the click happens to cause a page change.

It should be noted that there is a tradeoff to doing this query cancellation. The
tradeoff is between server resource management vs. performance. More on this
tradeoff in the final section (Additional Considerations).

ADDITIONAL SOURCE FILES (NOT M, V, OR C)

LiveViewQueryService
We saw in the PageView.js an iteration through each component for a section of
the dashboard. For each, we create an object called a componentModel:

 componentModel = new LiveViewQueryService LiveQueryModel({queryString:
component.query});

This componentModel is a LiveQueryModel provided by a LiveViewQueryService.
It is within this service that we encapsulate all the LiveView JS API calls. We are
delegating all the LiveView related activities to a service. Angular has a specific
service type of contract. We are not using a framework, so we wrote our own type
of service in the liveviewQueryService code. In general, this service helps maintain
separation of sense of responsibilities.

Other source code in the sample returns a constructor function, but for the
service, we return an object with a few different functions in it. The definition of a
service is providing multiple functions. This LiveQueryService gives access to the
LiveQueryModel. The main purpose of query service: maintain one connection to
the LiveView server. Any component that wishes to issue a query, uses / shares
this one connection. If you do not share a connection, you will consume slightly
more memory.

Additionally, in this service you could inspect incoming queries to determine
if the incoming query is a repeat. Rather than re-issue identical queries, the
components could share results. This would be an optimization. You could have
one model per unique query string. Each visualization shares a query, and adds
its own listeners to the shared LiveQueryModel for that query. When data is
generated for the query, it would be sent to each registered listener. We did NOT
do this, but you could. Example: in this sample, the Inventory page has three
different visualizations, each one driven by a unique query with its own criteria.
An alternative would be to pose one generic query (select * from ItemsInventory)
and let that one query feed multiple listeners. By doing this, you relieve pressure
on the LiveView server. Rather than the server needing to run three queries, it
runs only one.

We recommend you put here in the QueryService any type of filter or buffering
desired. For instance, if the updates to your data are coming too frequently, then
the QueryService is the place where the data can and should be conflated. For
readers familiar with the LiveView Java APIs, there is no batchQueryListener
implemented in theLiveView JS APIs. There is more on this topic in the upcoming

“Additional Considerations” section.
Within our LiveQueryService we define a LiveQueryModel. It is the

LiveQueryModel instances that drive the data for each of the visualizations. When
an instance of a LiveQueryModel gets an event (onDelete, onInsert etc) from
LiveView, it will execute the callback function(s) that was passed in. The instances
could be any of the visualization types (a pie, a guage, etc).

HOW-TO GUIDE | 19

Very important point of emphasis: This is how a view gets its query data. What a
view then does with the query data is handled in the view specific .js file.

To accomplish this control center of how a view gets its query data, in
LiveQueryService.js we have the prototype for LiveQueryModel with functions like:

 addSchemaListener: function(callback, context){

Then within each visualization type source code (TableView.js), we see that
visualization call to add different types of listeners. The implementation of the
visualization specific listeners determines what the user sees on the screen.
The developer must decide which listeners to add. Then, for each listener, the
developer must decide what behavior to implement.

TupleStore
The TupleStore is the last piece of the sample source code. It maintains the result
set of the query. A continuous query returns a bunch of tuples, and as time goes
by, the query may remove or update values. This tupleStore maintains the current
result set for the query. Having a current result set is useful (necessary) on
updates and deletes because updates come as deltas. Given four fields, A through
D, an update may come that notifies you that field A and field D have changed;
the update does not tell you about fields B and C. If you need to know those
other fields in order to supply that to the visualization, then you need something
like the TupleStore that maintains a complete picture of the query result data.
You may not need a TupleStore for your visualizations, but we have found it to be
necessary with some of ours.

TAKEAWAYS: FORMULA FOR SUCCESS
Samples create practice, both as reference material and as a starting point for many
projects. As such, we have created this particular sample as “ideal.” Time was taken
to follow standard models/premises behind those standard models, so that if this
sample were to be reused, the new project could be on a path to success via good
programming practices. This LiveView JS sample we hold as “best practice.” The
guidelines that we recommend you use are the ones we used here:

•  Make a commitment to use a model (we highly recommend MVC) and stick to
that commitment.

•  Define your model, view and controller as well as how they will interact with
one another.

•  Use a service to encapsulate the access to the LiveView server connection and
queries via the APIs.

•  Share the connection to the LiveView server.

•  Optimize/share queries and results. (Our sample does not do this, but if you
wanted to optimize or share queries, this is where that functionality would
be best suited.)

•  Throttle results. (Our sample does not do this, but if necessary, this is where
that functionality would be best suited.)

•  Use a TupleStore (or similar type of construct) to hold result data sets.

•  Define interactions and encapsulate them via callbacks.

•  Minimize the static content in your index.html. Make your app capable of being
dynamic in your model. In this example, that dynamic flexibility comes from the
app.model; it can accommodate any number of pages, within each page, any
number of sections and within the sections, any number of components.

•  Define visualizations that are reusable; provide configuration options and have a
result be different visually, based on those options, but still using the same code
base. In this example ChartView.js is generic and can be used with a large number
of the Highchart chart types. One need only call to buildChart with a plotType of

“bar” or “spline” to get a different type of visualization on the screen.

HOW-TO GUIDE | 20

TIBCO Software empowers executives, developers, and business users with Fast Data solutions that make the
right data available in real time for faster answers, better decisions, and smarter action. Over the past 15 years,
thousands of businesses across the globe have relied on TIBCO technology to integrate their applications and
ecosystems, analyze their data, and create real-time solutions. Learn how TIBCO turns data—big or small—into
differentiation at www.tibco.com.
©2015, TIBCO Software Inc. All rights reserved. TIBCO, the TIBCO logo, TIBCO Software, LiveView, and StreamBase are trademarks or registered trademarks
of TIBCO Software Inc. or its subsidiaries in the United States and/or other countries. All other product and company names and marks in this document are the
property of their respective owners and mentioned for identification purposes only.

09/21/15

Global Headquarters
3307 Hillview Avenue
Palo Alto, CA 94304
+1 650-846-1000 TEL
+1 800-420-8450
+1 650-846-1005 FAX
www.tibco.com

ADDITIONAL CONSIDERATIONS
There has been no attempt to address any performance related issues. Tuning a
LiveView JS application is outside the scope of this paper. However, two specific
items with a high potential to affect the performance of the application will be
mentioned here for your consideration.

1 Load placed on the LV server

2 Data rate of result set(s)

LIVEVIEW SERVER LOAD
The number and type of queries posed as well as the start rate of queries has
a tremendous potential to affect the performance of any LiveView application.
Furthermore, the volume of result set for each query also has a performance
impact. In this sample, when we change from one PageView to another, we cancel
the queries that were running on the previously active page. Then we execute
the queries on the newly selected page. There is a cost to parsing and planning
all queries. For a continuous query, the startup time can be large as the snapshot
portion must be computed. Therefore, it may be more beneficial to leave the
queries running on the other page. Conversely, if the queries on the page that is
not being viewed are sending great numbers of updates (on the order of 10K per
second) then that is “expensive” and it may be best to cancel those queries when
the page is not being shown to the users. Another option for the application
programmer is to look at the incoming query and compare it to existing queries.
Rather than posing a duplicate query, multiple visualizations could share the
results of one query (you can think of it as a shared query). This sample does
not do that, but using the service, the TupleStore, and callbacks, it could be
implemented if deemed worthy.

If there is a concern around the number of queries being run/left running
one option is to use the centralized control mechanism (the service) to keep
track of how many queries are being run. You could keep a LRU list or some
other policy and use it to keep track of when to cancel a given query or set of
queries. All of these possible scenarios are presented here as food for thought. All
implementation details are left to the developer.

DATA RATE AND RENDERING
The human eye is physically limited to how much data change it is able to see.
Attempting to refresh any chart more often than the rate the eye can detect
is wasted. Furthermore, if your data change rate is of a high volume, then
an attempt to refresh or render each change may require a great number of
resources and thus impact the performance of your application. The application
developer should keep this in mind when planning to render query results.
Perhaps a conflation of data is warranted. One option is to conflate in the
LiveView server via periodic publish; another option is to conflate on the
client side. The decision and implementation of either technique is left as an
implementation detail for the LiveView JS API programmer.

